Table J.5.2 HOLE DIAMETER D_h FOR TYPE C, D, F, AND T SCREWS

Metal Thickness (in.)

screw size	0.050	0.060	0.083	0.109	0.125	0.140	3/16	1/4	5/16	3/8	1/2
Hole Diameter (in.)											
8-32	0.1360	0.1360	0.1360	0.1405	0.1405	0.1440	0.1470	0.1495	0.1495		
10-24	0.1495	0.1520	0.1540	0.1570	0.1590	0.1610	0.1660	0.1719	0.1730	0.1730	
10-32	0.1610	0.1610	0.1610	0.1660	0.1660	0.1660	0.1719	0.1770	0.1770	0.1770	
12-24		0.1770	0.1800	0.1820	0.1850	0.1875	0.1910	0.1990	0.1990	0.1990	0.1990
1/4-20			0.2055	0.2090	0.2130	0.2130	0.2210	0.2280	0.2280	0.2280	0.2280
1/4-28			0.2188	0.2210	0.2210	0.2210	0.2280	0.2344	0.2344	0.2344	0.2344

¹⁾ for material thicknesses not given, use the next smaller thickness.

J.5.2 Minimum Spacing of Screws

The distance between screw centers shall not be less than 2.5 times the nominal diameter of the screw.

J.5.3 Minimum Edge Distance of Screws

The distance from the center of a screw to an edge of a part shall not be less than 1.5 times the nominal diameter of the screw. See Section J.5.5.1 for the effect of edge distance on the bearing strength.

J.5.4 Screwed Connection Tension

The tensile strength of a screwed connection is the least of the pull-out, pull-over, and screw tensile rupture strengths. The design tensile strength ϕR_n and the allowable tensile strength R_n/Ω shall be determined as follows:

 $\phi = 0.50 \text{ (LRFD)}$

 $\Omega = 3.0$ (ASD building-type structures)

 $\Omega = 3.5$ (ASD bridge-type structures)

The nominal strength R_n for the limit state of pull-out shall be determined in accordance with Section J.5.4.1.

The nominal strength R_n for the limit state of pull-over shall be determined in accordance with Section J.5.4.2.

The nominal strength R_n for the limit state of screw tensile rupture shall be determined in accordance with Section J.5.4.3.

For screws subjected to tension, the head of the screw or washer, if a washer is provided, shall have a nominal diameter not less than 5/16 in. (8 mm). Washers shall have a nominal thickness not less than 0.050 in. (1.3 mm).

J.5.4.1 Pull-Out

J.5.4.1.1 Screws in Holes

The nominal strength R_n for the limit state of pull-out of a screw in a hole is:

a) For UNC and UNF threads (screw types C, D, F, G, and T)

1) for 0.060 in. $\leq L_e \leq$ 0.125 in. (1.5 mm $\leq L_e \leq$ 3 mm)

$$R_n = K_s D L_e F_{tv2} \tag{J.5-1}$$

where

 $K_s = 1.01$ for 0.060 in. $\leq L_e < 0.080$ in. (1.5 mm $\leq L_e < 2$ mm)

 $K_s = 1.20$ for 0.080 in. $\leq L_e \leq 0.125$ in. (2 mm $\leq L_e \leq 3$ mm)

 F_{ty2} = tensile yield strength of member not in contact with the screw head

D = nominal diameter of the screw

2) for 0.125 in. $< L_e < 0.25$ in. $(3 \text{ mm} < L_e < 6.3 \text{ mm})$

$$R_n = 1.2DF_{tv2}(0.25 - L_e) + 1.16A_{sn}F_{tu2}(L_e - 0.125)$$
 (J.5-2)

where

 A_{sn} = thread stripping area of internal thread per unit length of engagement

 F_{tu2} = tensile ultimate strength of member not in contact with the screw head

3) for 0.25 in. $\leq L_e \leq$ 0.375 in. (6.3 mm $\leq L_e \leq$ 10 mm)

$$R_n = 0.58 A_{sn} L_e F_{tu2} (J.5-3)$$

b) For spaced threads (screw types AB, B, BP, BF, and BT)

1) for 0.038 in. $\leq L_e \leq 2/n$ (1 mm $\leq L_e \leq 2/n$)

$$R_n = K_s D L_e F_{tv2} \tag{J.5-4}$$

where

 $K_s = 1.01 \text{ for } 0.038 \text{ in.} \le L_e < 0.080 \text{ in.} (1 \text{ mm} \le L_e < 2 \text{ mm})$

 $K_s = 1.20$ for 0.080 in. $< L_e < 2/n$ (2 mm $< L_e < 2/n$)

2) for $2/n < L_e < 4/n$

$$R_n = 1.2D F_{ty2} (4/n - L_e) + 3.26D F_{tu2} (L_e - 2/n)$$
 (J.5-5)

3) for $4/n < L_e < 0.375$ in. $(4/n < L_e < 8 \text{ mm})$

$$R_n = 1.63D L_e F_{tu2}$$
 (J.5-6)

July 2017 I - 61