Table A.4.3
NOMINAL STRENGTHS OF WROUGHT ALUMINUM PRODUCTS

ALLOY	TEMPER	ASTM SPECIFICATION, PRODUCT	THICKNESS in		$F_{t u}$ ksi	$\overline{F_{t y}}$ ksi	$F_{\text {tuw }}$ ksi	$F_{t y w}$ ksi	$\boldsymbol{k}_{\boldsymbol{t}}$
			from	to					
1060	H12 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	11	9	8	2.5	1
1060	H12	B210, drawn tube	0.010	0.500	10	4	8.5	2.5	1
1060	H14 ${ }^{1}$	B209, sheet \& plate	0.009	1.000	12	10	8	2.5	1
1060	H14	B210, drawn tube	0.010	0.500	12	10	8.5	2.5	1
1100	H12 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	14	11	11	3.5	1
1100	H12	B210, drawn tube	0.014	0.500	14	11	11	3.5	1
1100	H14 ${ }^{1}$	B209, sheet \& plate	0.009	1.000	16	14	11	3.5	1
1100	H14	B210, drawn tube	0.014	0.500	16	14	11	3.5	1
2014	T6	B209, sheet \& plate	0.040	0.249	66	58	-	-	1.25
2014	T651	B209, sheet \& plate	0.250	2.000	67	59	-	-	1.25
2014	T6, T6510, T6511	B221, extrusion	-	0.499	60	53	-	-	1.25
2014	T6, T651	B211, bar, rod, \& wire	0.125	8.000	65	55	-	-	1.25
2014	T6	B210, drawn tube	0.018	0.500	65	55	-	-	1.25
Alclad 2014	T6	B209, sheet \& plate	0.025	0.039	63	55	-	-	1.25
Alclad 2014	T6	B209, sheet \& plate	0.040	0.249	64	57	-	-	1.25
Alclad 2014	T651	B209, sheet \& plate	0.250	0.499	64	57	-	-	1.25
2219	T87	B209, sheet \& plate	0.250	3.000	64	51	35	26	1.25
3003	H12 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	17	12	14	5	1
3003	H12	B210, drawn tube	0.010	0.500	17	12	14	5	1
3003	H14 ${ }^{1}$	B209, sheet \& plate	0.009	1.000	20	17	14	5	1
3003	H14	B210, drawn tube	0.010	0.500	20	17	14	5	1
3003	H16 ${ }^{1}$	B209, sheet \& plate	0.006	0.162	24	21	14	5	1
3003	H16	B210, drawn tube	0.010	0.500	24	21	14	5	1
3003	H18 ${ }^{1}$	B209, sheet \& plate	0.006	0.128	27	24	14	5	1
3003	H18	B210, drawn tube	0.010	0.500	27	24	14	5	1
Alclad 3003	H12 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	16	11	13	4.5	1
Alclad 3003	H14 ${ }^{1}$	B209, sheet \& plate	0.009	1.000	19	16	13	4.5	1
Alclad 3003	H16 ${ }^{1}$	B209, sheet \& plate	0.006	0.162	23	20	13	4.5	1
Alclad 3003	H14	B210, drawn tube	0.010	0.500	19	16	13	4.5	1
Alclad 3003	H18	B210, drawn tube	0.010	0.500	26	23	13	4.5	1
3004	H32 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	28	21	22	8.5	1
3004	H34 ${ }^{1}$	B209, sheet \& plate	0.009	1.000	32	25	22	8.5	1
3004	H36 ${ }^{1}$	B209, sheet \& plate	0.006	0.162	35	28	22	8.5	1
3004	H38 ${ }^{1}$	B209, sheet \& plate	0.006	0.128	38	31	22	8.5	1
Alclad 3004	H32 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	27	20	21	8	1
Alclad 3004	H34 ${ }^{1}$	B209, sheet \& plate	0.009	1.000	31	24	21	8	1
Alclad 3004	H36 ${ }^{1}$	B209, sheet \& plate	0.006	0.162	34	27	21	8	1
3005	H25	B209, sheet \& plate	0.016	0.080	26	22	-	-	1
3005	H28	B209, sheet \& plate	0.016	0.080	31	27	-	-	1
3105	H25	B209, sheet \& plate	0.013	0.080	23	19	-	-	1
5005	H12	B209, sheet \& plate	0.017	2.000	18	14	15	5	1
5005	H14	B209, sheet \& plate	0.009	1.000	21	17	15	5	1
5005	H16	B209, sheet \& plate	0.006	0.162	24	20	15	5	1
5005	H32 ${ }^{1}$	B209, sheet \& plate	0.017	2.000	17	12	15	5	1

$F_{S T}$ is determined using Section B.5.4.2
$\rho_{S T}=$ stiffener effectiveness ratio determined as follows:
a) $\rho_{S T}=1.0$ for $b / t \leq \lambda_{e} / 3$
b) $\rho_{S T}=\frac{r_{s}}{9 t\left(\frac{b / t}{\lambda_{e}}-\frac{1}{3}\right)} \leq 1.0$ for $\lambda_{e} / 3<b / t \leq \lambda_{e}($ B.5-7)
c) $\rho_{S T}=\frac{r_{s}}{1.5 t\left(\frac{b / t}{\lambda_{e}}+3\right)} \leq 1.0$ for $\lambda_{e}<b / t<2 \lambda_{e}$ (B.5-8)
$r_{s}=$ the stiffener's radius of gyration about the stiffened element's mid-thickness.

For straight stiffeners of constant thickness (see Figure B.5.3)

$$
r_{s}=\left(d_{s} \sin \theta_{s}\right) / \sqrt{3}
$$

where
$d_{s}=$ the stiffener's flat width and
$\theta_{s}=$ the angle between the stiffener and the stiffened element.

$$
\begin{equation*}
\lambda_{e}=1.28 \sqrt{E / F_{c y}} \tag{B.5-9}
\end{equation*}
$$

F_{c} for the stiffened element determined using Section B.5.4.3 shall not exceed F_{c} for the stiffener determined using Section B.5.4.1.

For flat elements
a) supported on one edge and with a stiffener on the other edge, and
b) with a stiffener of depth $D_{S}>0.8 b$, where D_{S} is defined in Figure B.5.3, or with a thickness greater than the stiffener's thickness,
the stress F_{c} corresponding to the uniform compressive strength is $F_{c}=F_{U T}$.

B.5.4.4 Flat Elements Supported on Both Edges and with an Intermediate Stiffener

The stress F_{c} corresponding to the uniform compressive strength of flat elements supported on both edges and with an intermediate stiffener is:

LIMIT STATE	F_{c}	Slenderness λ_{s}	Slenderness Limits
yielding	$F_{c y}$	$\lambda_{s} \leq \lambda_{1}$	$\lambda_{1}=\frac{B_{c}-F_{c y}}{D_{c}}$
inelastic buckling	$B_{c}-D_{c} \lambda_{s}$	$\lambda_{1}<\lambda_{s}<\lambda_{2}$	
elastic buckling	$\frac{\pi^{2} E}{\lambda_{s}{ }^{2}}$	$\lambda_{s} \geq \lambda_{2}$	$\lambda_{2}=C_{c}$

where

$$
\begin{equation*}
\lambda_{s}=4.62 \frac{b}{t} \sqrt{\frac{1+A_{s} /(b t)}{1+\sqrt{1+\frac{10.67 I_{o}}{b t^{3}}}}} \tag{B.5-10}
\end{equation*}
$$

$A_{s}=$ area of the stiffener only, not including any part of the element stiffened.
$I_{o}=$ moment of inertia of a section comprising the stiffener and one half of the width of the adjacent sub-elements and the transition corners between them, taken about the centroidal axis (denoted as o-o in Figure B.5.4) of the section parallel to the stiffened element.
$b=$ distance between stiffener and supporting element (see Figure B.5.4)
$t=$ thickness of the flat element supported on both edges (see Figure B.5.4)
F_{c} shall not exceed F_{c} determined using Section B.5.4.2 for the sub-elements of the stiffened element, and shall not exceed F_{c} of the stiffener determined using Section B.5.4.1.

B.5.4.5 Round Hollow Elements and Curved Elements Supported on Both Edges

The stress F_{c} corresponding to the uniform compressive strength of round hollow elements and curved elements supported on both edges is:

$$
\lambda=\sqrt{\frac{R_{b}}{t}}
$$

For round hollow elements with transverse welds, use of Section B.5.4.5 is limited to elements with $R_{b} / t<20$.

B.5.4.6 Direct Strength Method

As an alternate to Sections B.5.4.1 through B.5.4.4, the stress F_{c} corresponding to the uniform compressive strength of flat elements without welds may be determined as:

LIMIT STATE	F_{c}	Slenderness $\lambda_{e q}$	Slenderness Limits
yielding	$F_{c y}$	$\lambda_{e q} \leq \lambda_{1}$	$\lambda_{1}=\frac{B_{p}-F_{c y}}{D_{p}}$
inelastic buckling	$B_{p}-D_{p} \lambda_{e q}$	$\lambda_{1}<\lambda_{e q}<\lambda_{2}$	
post-buckling	$\frac{k_{2} \sqrt{B_{p} E}}{\lambda_{e q}}$	$\lambda_{e q} \geq \lambda_{2}$	$\lambda_{2}=\frac{k_{1} B_{p}}{D_{p}}$

$$
\begin{equation*}
\lambda_{e q}=\pi \sqrt{\frac{E}{F_{e}}} \tag{B.5-11}
\end{equation*}
$$

$F_{e}=$ the elastic local buckling stress of the cross section determined by analysis

B.5.5 Strength of Elements in Flexural Compression

The stress F_{b} corresponding to the flexural compressive strength of elements is:
For unwelded elements:

$$
\begin{equation*}
F_{b}=F_{b o} \tag{B.5-12}
\end{equation*}
$$

For welded elements:

$$
\begin{equation*}
F_{b}=F_{b o}\left(1-A_{w z c} / A_{g c}\right)+F_{b w} A_{w z c} / A_{g c} \tag{B.5-13}
\end{equation*}
$$

where
$F_{b o}=$ stress corresponding to the flexural compressive strength calculated using Sections B.5.5.1 through B.5.5.3 for an element if no
part of the cross section were weld-affected. Use buckling constants for unwelded metal (Table B.4.1 or Table B.4.2) and $F_{c y}$.
$F_{b w}=$ stress corresponding to the flexural compressive strength calculated using Sections B.5.5.1 through B.5.5.3 for an element if the entire cross section were weld-affected. Use buckling constants for weld-affected zones (Table B.4.1) and $F_{c y w}$. cross sectional area of the weld-affected zone in compression
$A_{g c}=$ gross cross sectional area of the element in compression.

B.5.5.1 Flat Elements Supported on Both Edges

The stress F_{b} corresponding to the flexural compressive strength of flat elements supported on both edges and flat elements supported on the compression edge with the tension edge free is:

LIMIT STATE	F_{b}	Slenderness b / t	Slenderness Limits
yielding	$1.5 F_{c y}$	$b / t \leq \lambda_{1}$	$\lambda_{1}=\frac{B_{b r}-1.5 F_{c y}}{m D_{b r}}$
inelastic buckling	$B_{b r}-m D_{b r} b / t$	$\lambda_{1}<b / t<\lambda_{2}$	
post- buckling	$\frac{k_{2} \sqrt{B_{b r} E}}{(m b / t)}$	$b / t \geq \lambda_{2}$	$\lambda_{2}=\frac{k_{1} B_{b r}}{m D_{b r}}$

$$
\begin{array}{ll}
m=1.15+c_{o} /\left(2 c_{c}\right) & \text { for }-1<c_{o} / c_{c}<1 \\
m=1.3 /\left(1-c_{o} / c_{c}\right) & \text { for } c_{o} / c_{c} \leq-1
\end{array}
$$

If the leg tip is in tension, lateral-torsional buckling strength determined by Section F.5c with

$$
\begin{equation*}
M_{e}=\frac{0.73 E b^{4} t C_{b}}{L_{b}^{2}}\left[\sqrt{1+0.88\left(L_{b} t / b^{2}\right)^{2}}+1\right] \tag{F.5-5}
\end{equation*}
$$

c) Equal leg angles without lateral-torsional restraint: Strengths shall be calculated with S_{c} equal to 0.80 of the geometric section modulus.

If the leg tip is in compression, M_{n} is the lesser of:
(1) local buckling strength determined by Section F.5a(1)
(2) lateral-torsional buckling strength determined by F.5c with

$$
\begin{equation*}
M_{e}=\frac{0.58 E b^{4} t C_{b}}{L_{b}{ }^{2}}\left[\sqrt{1+0.88\left(L_{b} t / b^{2}\right)^{2}}-1\right] \tag{F.5-6}
\end{equation*}
$$

If the leg tip is in tension, M_{n} is the lesser of:
(1) yield strength determined by Section F.5b
(2) lateral-torsional buckling strength determined by Section F.5c with

$$
\begin{equation*}
M_{e}=\frac{0.58 E b^{4} t C_{b}}{L_{b}^{2}}\left[\sqrt{1+0.88\left(L_{b} t / b^{2}\right)^{2}}+1\right] \tag{F.5-7}
\end{equation*}
$$

d) Unequal leg angles without lateral-torsional restraint: moments about the geometric axes shall be resolved into moments about the principal axes and the angle shall be designed as an angle bent about a principal axis (Section F.5.2).
a) Major axis bending: M_{n} is the lesser of:
(1) local buckling strength determined by Section F.5a for the leg with its tip in compression
(2) lateral-torsional buckling strength determined by Section F.5c, with

$$
\begin{align*}
& M_{e}=\frac{9 E A r_{z} t C_{b}}{8 L_{b}}\left(\sqrt{1+\left(4.4 \frac{\beta_{w} r_{z}}{L_{b} t}\right)^{2}}+4.4 \frac{\beta_{w} r_{z}}{L_{b} t}\right) \tag{F.5-8}\\
& \beta_{w}=\left[\frac{1}{I_{w}} \int z\left(w^{2}+z^{2}\right) d A\right]-2 z_{o} \tag{F.5-9}
\end{align*}
$$

β_{w} is the coefficient of monosymmetry about the major principal axis. β_{w} is positive when the short leg is in compression, negative when the long leg is in compression, and zero for equal-leg angles. (See the commentary for values for common angle sizes and equations for determining β_{w}.) If the long leg is in compression anywhere along the unbraced length of the angle, $\boldsymbol{\beta}_{w}$ shall be taken as negative.
$z_{o}=$ coordinate along the z-axis of the shear center with respect to the centroid
$I_{w}=$ moment of inertia about the major principal axis
b) Minor axis bending:
(1) If the leg tips are in compression, M_{n} is the lesser of the local buckling strength determined by Section F.5a(1) and the yield strength determined by Section F.5b.
(2) If the leg tips are in tension, M_{n} is the yield strength determined by Section F.5b.

F.5.2 Bending About Principal Axes

Bending about principal axes is shown in Figure F.5.5.

Minor Axis Bending Major Axis Bending
Figure F.5. 5

This chapter addresses connecting elements and connectors.

J. 1 GENERAL PROVISIONS

J.1.1 Design Basis

The available strength of connections shall be determined in accordance with the provisions of this chapter and Chapter B.

If the longitudinal centroidal axes of connected axially loaded members do not intersect at one point, the connection and members shall be designed for the effects of eccentricity.

J.1.2 Fasteners in Combination with Welds

Fasteners shall not be considered to share load in combination with welds.

J.1.3 Maximum Spacing of Fasteners

The pitch and gage of fasteners joining components of tension members shall not exceed $(3+20 t)$ in. [(75 + 20t) mm] where t is the thickness of the outside component.

In outside components of compression members:
a) The component's strength shall satisfy the requirements of Section E. 2 with an effective length $k L=s / 2$, where s is the pitch, and
b) If multiple rows of fasteners are used, the component's strength shall satisfy the requirements of Section B.5.4.2 with a width $b=0.8 g$ where g is the gage. If only one line of fasteners is used, the component's strength shall satisfy the requirements of Section B.5.4.1 with a width $b=$ the edge distance of the fastener.

J. 2 WELDS

The available strength (ϕR_{n} for LRFD and R_{n} / Ω for ASD) of welds shall be determined using this Section where $\phi=0.75$ (LRFD)
$\Omega=1.95$ (ASD)

J.2.1 Groove Welds

J.2.1.1 Complete Joint Penetration and Partial Joint Penetration Groove Welds

The following types of groove welds are complete joint penetration welds:
a) Welds welded from both sides with the root of the first weld backgouged to sound metal before welding the second side.
b) Welds welded from one side using permanent or temporary backing.
c) Welds welded from one side using AC-GTAW root
pass without backing
d) Welds welded from one side using PAW-VP in the keyhole mode.

All other groove welds are partial joint penetration welds.

J.2.1.2 Groove Weld Size

The size S_{w} of a complete joint penetration groove weld is the thickness of the thinner part joined.

The size S_{w} of a partial joint penetration groove weld is the depth of preparation for all J and U groove welds and for all V and bevel groove welds with an included angle greater than 45°.

J.2.1.3 Groove Weld Effective Length

A groove weld's effective length $L_{w e}$ for tension and compression is the length of the weld perpendicular to the direction of tensile or compressive stress. A groove weld's effective length for shear is the length of the weld parallel to the direction of shear stress.

J.2.2 Fillet Welds

J.2.2.1 Fillet Weld Size

The effective throat $S_{w e}$ is the shortest distance from the joint root to the face of the diagrammatic weld.

The size of fillet welds shall be not less than the size required to transmit calculated forces or the size shown in Table J.2.1. These requirements do not apply to fillet weld reinforcements of groove welds.

Table J.2.1 MINIMUM SIZE OF FILLET WELDS

Base Metal Thickness t of Thicker Part Joined in.	Minimum Size of Fillet Weld in.
$t \leq 1 / 4$	$1 / 8$
$1 / 4<t \leq 1 / 2$	$3 / 16$
$1 / 2<t \leq 3 / 4$	$1 / 4$
$t>3 / 4$	$5 / 16$

Base Metal Thickness t of Thicker Part Joined mm	Minimum Size of Filet Weld mm
$t \leq 6$	3
$6<t \leq 13$	5
$13<t \leq 20$	6
$t>20$	8

The maximum size of fillet welds shall be:
a) Along edges of material less than $1 / 4 \mathrm{in}$. $(6 \mathrm{~mm})$ thick, not greater than the thickness of the material.
b) Along edges of material $11 / 4 \mathrm{in}$. (6 mm) or more in thickness, no greater than the thickness of the material minus $1 / 16$ in. (2 mm), unless the weld is especially designated on the drawings to be built out to obtain full-throat thickness. In the as-welded condition, the distance between the edge
of the base metal and the toe of the weld is permitted to be less than $1 / 16 \mathrm{in} .(2 \mathrm{~mm})$ provided the weld size is clearly verifiable.

J.2.2.2 Fillet Weld Effective Length

A fillet weld's effective length $L_{w e}$ is the overall length of the weld, including boxing. If the effective length is less than four times its nominal size S_{w}, the effective weld size shall be considered to be 25% of its effective length.

The length of any segment of intermittent fillet welds shall not be less than the greater of four times the weld size and $11 / 2 \mathrm{in}$. (40 mm).

The maximum effective length of an end-loaded fillet weld is $100 S_{w}$.

J.2.3 Plug and Slot Welds

The effective area $A_{w e}$ of plug or slot welds is the nominal area of the hole or slot in the plane of the faying surface. Slot lengths shall not exceed 10 times the slotted material's thickness.

J.2.4 Stud Welds

The base metal thickness for arc stud welding shall not be less than 50% of the stud diameter. The base metal thickness for capacitor discharge stud welding shall not be less than 25% of the stud diameter.

J.2.5 Strength

The nominal strength R_{n} of groove, fillet, plug, slot, and stud welded joints shall be the lesser of the base material strength for the limit states of tensile rupture and shear rupture and the weld metal strength for the limit state of rupture as follows:
a) For the base metal

$$
R_{n}=F_{n B M} A_{B M}
$$

b) For the weld metal

$$
\begin{equation*}
R_{n}=F_{n w} A_{w e} \tag{J.2-2}
\end{equation*}
$$

where

$F_{n B M}=$ nominal stress of the base metal corre-
sponding to its welded ultimate strength
from Table A.4.3 or Table A.4.3M
$F_{n w}=$ nominal stress of the weld metal correspond-
ing to its ultimate strength from Table A.4.6
$A_{B M}=$ cross-sectional area of the base metal
$A_{w e}=$ effective area of the weld
$F_{n B M}, F_{n w}, A_{B M}$, and $A_{w e}$ are given in Table J.2.2.

Table J.2.2 NOMINAL STRENGTH OF WELDED JOINTS

	Base Metal		Weld Metal	
Load Type and Direction Relative to Weld Axis	Nominal Stress $F_{\text {пВМ }}$	Effective Area $A_{B M}$	Nominal Stress $F_{n w}$	Effective Area $A_{\text {we }}$
COMPLETE-JOINT PENETRATION GROOVE WELDS				
tension or compression normal to weld axis	$F_{\text {tuw }}$	$S_{w} L_{\text {we }}$	$F_{\text {tuw }}$	$S_{w} L_{\text {we }}$
tension or compression parallel to weld axis	tension or compression in parts parallel to a weld need not be considered in designing welds joining the parts			
shear	$0.6 F_{\text {tuw }}$	$S_{w} L_{\text {we }}$	$0.6 F_{\text {tuw }}$	$S_{w} L_{\text {we }}$
PARTIAL-JOINT PENETRATION GROOVE WELDS				
tension or compression normal to weld axis	tuw	$S_{w} L_{\text {we }}$	$0.6 F_{\text {tuw }}$	$S_{w} L_{\text {we }}$
tension or compression parallel to weld axis	tension or compression in parts parallel to a weld need not be considered in designing welds joining the parts			
shear	$0.6 F_{\text {tuw }}$	$S_{w} L_{\text {we }}$	$0.6 F_{\text {tuw }}$	$S_{w} L_{\text {we }}$
FILLET WELDS				
shear	$0.6 F_{\text {tuw }}$	$S_{w} L_{\text {we }}$	$\begin{aligned} & 0.6\left(0.85 F_{\text {tuw }}\right) \\ & (\text { see note } 1) \end{aligned}$	$S_{w e} L_{\text {we }}$
tension or compression parallel to weld axis	tension or compression in parts parallel to a weld need not be considered in designing welds joining the parts			
PLUG AND SLOT WELDS				
shear parallel to faying surface	$0.6 F_{\text {tuw }}$	see J.2.3	$0.6 F_{\text {tuw }}$	see J.2.3
STUD WELDS				
shear	$0.6 F_{\text {tuw }}$	$\pi D^{2 / 4}$	$0.6 F_{\text {tuw }}$	$(\pi / 4)(D-1.191 / n)^{2}$
tension	$F_{\text {tuw }}$	$\pi D^{2 / 4}$	$F_{\text {tuw }}$	$(\pi / 4)(D-1.191 / n)^{2}$

(1) Alternately, the strength of fillet welds loaded transversely shall be taken as 1.36 times the strength given in Table J.2.2.
(2) $F_{\text {tuw }}$ for base metal is listed in Tables A.4.3 and A.4.3M.
(3) $F_{\text {tuw }}$ for filler metal is listed in Table A.4.6.

J.2.6 Combination of Welds

If two or more of the types of welds (groove, fillet, plug, or slot) are combined in a single joint, the strength of each shall be separately computed with respect to the axis of the group in order to determine the strength of the combination.

J.2.7 Post-Weld Heat Treatment

The nominal strength of the weld-affected zone of post-weld-heat-treated base metal shall be taken as given in

Table J.5.4
HOLE DIAMETER FOR EQUATION J.5-10

Screw Size	Screw Diameter \boldsymbol{D} in.	Hole Diameter $\boldsymbol{D}_{\boldsymbol{h}}$ in.	Drill Size
8	0.164	0.177	16
10	0.190	0.201	7
12	0.216	0.228	1
$1 / 4$	0.250	0.266	H

b) The nominal strength R_{n} for the limit state of pull-over for countersunk screws with an 82° nominal angle head is:

$$
\begin{equation*}
R_{n}=\left(0.27+1.45 t_{1} / D\right) D t_{1} F_{t y 1} \tag{J.5-11}
\end{equation*}
$$

for $0.06 \mathrm{in} . \leq t_{1}<0.19 \mathrm{in}$. ($1.5 \mathrm{~mm} \leq t_{1}<5 \mathrm{~mm}$) and $t_{1} / D \leq 1.1$. If $t_{1} / D>1.1$, use $t_{1} / D=1.1$

J.5.4.3 Screw Tension

The nominal strength R_{n} of an aluminum screw for the limit state of screw tensile rupture is:

$$
\begin{equation*}
R_{n}=A_{r} F_{t u} / 1.25 \tag{J.5-12}
\end{equation*}
$$

where
$A_{r}=$ root area of the screw
$F_{t u}=$ tensile ultimate strength of the screw

$$
\begin{aligned}
& =68 \mathrm{ksi}(470 \mathrm{MPa}) \text { for } 7075-\mathrm{T} 73 \text { screws } \\
& =62 \mathrm{ksi}(430 \mathrm{MPa}) \text { for } 2024-\mathrm{T} 4 \text { screws }
\end{aligned}
$$

J.5.5 Screwed Connection Shear

The shear strength of a screwed connection is the least of the bearing, tilting, and screw shear rupture strengths. The available shear strength (ϕR_{n} for LRFD and R_{n} / Ω for ASD) shall be determined as follows:

$$
\begin{aligned}
& \phi=0.50(\mathrm{LRFD}) \\
& \Omega=3.0(\mathrm{ASD})
\end{aligned}
$$

The nominal strength R_{n} for the limit state of bearing shall be determined in accordance with Section J.5.5.1.

The nominal strength R_{n} for the limit state of tilting shall be determined in accordance with Section J.5.5.2.

The nominal strength R_{n} for the limit state of screw shear rupture shall be determined in accordance with Section J.5.5.3.

J.5.5.1 Screw Bearing

The nominal strength R_{n} for the limit state of bearing is

$$
\begin{equation*}
R_{n}=d_{e} t F_{t u} \leq 2 D t F_{t u} \tag{J.5-13}
\end{equation*}
$$

where
$d_{e}=$ distance from the center of the screw to the edge of the part in the direction of force.
$t=$ for plain holes, nominal thickness of the connected part; for countersunk holes, nominal thickness of the connected part less $1 / 2$ the countersink depth.
$F_{t u}=$ tensile ultimate strength of the connected part
$D=$ nominal diameter of the screw

J.5.5.2 Screw Tilting

For $t_{2} \leq t_{1}$, the nominal strength R_{n} for the limit state of tilting is:

$$
\begin{equation*}
R_{n}=4.2\left(t_{2}{ }^{3} D\right)^{1 / 2} F_{t u 2} \tag{J.5-14}
\end{equation*}
$$

where
$t_{1}=$ nominal thickness of the part in contact with the screw head or washer
$t_{2}=$ nominal thickness of the part not in contact with the screw head or washer
For $t_{2}>t_{1}$, tilting is not a limit state.

J.5.5.3 Screw Shear

The nominal strength R_{n} of an aluminum screw for the limit state of screw shear rupture is:

$$
\begin{aligned}
& \qquad \begin{aligned}
& R_{n}=A_{r} F_{s u} / 1.25 \\
& \text { where }
\end{aligned} \\
& \begin{aligned}
A_{r} & =\text { root area of the screw } \\
F_{s u} & =\text { shear ultimate strength of the screw } \\
& =41 \mathrm{ksi}(285 \mathrm{MPa}) \text { for } 7075-\mathrm{T} 73 \text { screws } \\
& =37 \mathrm{ksi}(255 \mathrm{MPa}) \text { for } 2024-\mathrm{T} 4 \text { screws }
\end{aligned}
\end{aligned}
$$

J. 6 PINS

J.6.1 Holes for Pins

The nominal diameter of holes for pins shall not be more than $1 / 32 \mathrm{in}$. (1 mm) greater than the nominal diameter of the pin.

J.6.2 Minimum Edge Distance of Pins

The distance from the center of a pin to an edge of a part shall not be less than 1.5 times the nominal diameter of the pin. See Section J.6.5 for the effect of edge distance on bearing strength.

J.6.3 Pin Tension

Pins shall not be used to resist loads acting parallel to the axis of the pin.

J.6.4 Pin Shear and Flexure

The available strength (ϕR_{n} for LRFD and R_{n} / Ω for ASD) of an aluminum pin in shear or flexure shall be determined as follows:
$M_{m}=$ mean value of the material factor, the ratio of the specimen's relevant material strength to the specified minimum strength. The relevant material strength shall be determined by conducting tensile tests in accordance with ASTM B557 on specimens taken from the component tested.
$n=$ number of tests
$\begin{aligned} R_{t i} & =\text { strength of } i \text { th test } \\ R_{t m} & =\text { mean strength of all tests }=\frac{\sum_{i=1}^{n} R_{t i}}{n}\end{aligned}$
$V_{F}=$ coefficient of variation of the fabrication factor
$V_{M}=$ coefficient of variation of the material factor
$V_{P}=$ coefficient of variation of the ratio of the test strengths divided by the average value of all the test strengths
$=\sqrt{\frac{\sum_{i=1}^{n}\left(\frac{R_{t i}}{R_{t m}}\right)^{2}-\frac{\sum_{i=1}^{n}\left(\frac{R_{t i}}{R_{t m}}\right)^{2}}{n}}{n-1}}$
$V_{Q}=$ coefficient of variation of the loads
$=\frac{\sqrt{(0.105 \alpha)^{2}+0.25^{2}}}{1.05 \alpha+1} ;$
in lieu of calculation by the above formula, $V_{Q}=0.21$
$\alpha=D_{n} / L_{n}$; in lieu of calculation, $\alpha=0.2$
$\beta o=$ the target reliability index
$=2.5$ for columns, beams and beam-columns,
$=3.0$ for tension members, and
$=3.5$ for connections.
The following values shall be used when data established from a sufficient number of results on material properties do not exist for the member or connection:

```
Mm}=1.10\mathrm{ for behavior governed by yield
    = 1.00 for behavior governed by rupture
Fm}=1.0
VM}=0.0
VF}=0.05\mathrm{ for structural members and mechanically
            fastened connections
    =0.15 for welded connections
```


1.4 TESTING ROOFING AND SIDING

The flexural strength of roofing and siding shall be established from tests when any of the following conditions apply.
a) Web angles are asymmetrical about the centerline of a valley, rib, flute, crimp, or other corrugation;
b) Web angles are less than 45°;
c) Aluminum panels are alternated with panels composed of any material having significantly different strengths or
deflection characteristics;
d) Flats spanning from rib to rib or other corrugation in the transverse direction have a width to thickness ratio greater than either of the following
(1) $\frac{1230}{\sqrt[3]{q}}$ where q is the design load in $\operatorname{psf}\left(\frac{447}{\sqrt[3]{q}}\right.$ where q is the design load in $\mathrm{kN} / \mathrm{m}^{2}$)
(2) $435 \sqrt{\frac{F_{t y}}{q}}$ where $F_{t y}$ is in ksi and q is in $\operatorname{psf}\left(37 \sqrt{\frac{F_{t y}}{q}}\right.$ where $F_{t y}$ is in MPa and q is in $\mathrm{kN} / \mathrm{m}^{2}$);
e) Panel ribs, valleys, crimps, or other corrugations are of unequal depths;
f) Specifications prescribe less than one fastener per rib to resist negative or uplift loading at each purlin, girt, or other transverse supporting member; or
g) Panels are attached to supporting members by profile interlocking straps or clips.

1.4.1 Test Method

Tests shall be conducted in accordance with ASTM E 1592.

1.4.2 Different Thicknesses

Only the thinnest and thickest specimens manufactured are required to be tested when panels are of like configuration, differing only in material thickness. Where the failure of the test specimens is from flexural stress, the flexural strength for intermediate thicknesses shall be interpolated as follows:

$$
\begin{equation*}
\log M_{i}=\log M_{1}+\left(\frac{\log t_{i}-\log t_{\min }}{\log t_{\max }-\log t_{\min }}\right)\left(\log M_{2}-\log M_{1}\right) \tag{1.4-1}
\end{equation*}
$$

where
$M_{i}=$ flexural strength of member of intermediate thickness t_{i}
$M_{1}=$ flexural strength of member of thinnest material
$M_{2}=$ flexural strength of member of thickest material
$t_{i}=$ thickness of intermediate thickness material
$t_{\text {min }}=$ thickness of thinnest material tested
$t_{\max }=$ thickness of thickest material tested

1.4.3 Available Strengths

Available strengths shall be determined using the resistance factors for LRFD and safety factors for ASD given in Chapter F for flexure and those in Chapter J applied to the minimum test strength achieved for fasteners.

1.4.4 Deflections

Deflections shall meet the requirements of Section L.3.

Bijlaard, P. P., and Fisher, G. P. (1952), "Column Strength of H-Sections and Square Tubes in Postbuckling Range of Component Plates", Technical Note 2994, National Advisory Committee for Aeronautics (now NASA).

Bleich, F. (1952), Buckling Strength of Metal Structures, McGraw-Hill.

British Standards Institution (1987), British StandardStructural Use of Steelwork in Building - Part 5. Code of Practice for Design of Cold-Formed Sections, BS 5950: Part 5:1987.

Brungraber, R. J., and Clark, J. W. (1962), "Strength of Welded Aluminum Columns," Transactions ASCE, Vol. 127, Part II, p. 202, 1962.

Chapuis, J., and Galambos, T. V. (1982), "Restrained Crooked Aluminum Columns," Journal of the Structural Division, ASCE, Vol. 108, No.ST3, March 1982, p. 511.

Clark, J. W., and Hill, H. N. (1960), "Lateral Buckling of Beams," Journal of the Structural Division, ASCE, Vol. 86, No. ST7, July, 1960, p. 175.

Clark, J. W., and Rolf, R. L. (1964), "Design of Aluminum Tubular Members," Journal of the Structural Division, ASCE, Vol. 90, No. ST6, December, 1964, p. 259.

Clark, J.W., and Rolf, R. L. (1966), "Buckling of Aluminum Columns, Plates, and Beams," Journal of the Structural Division, ASCE, Vol. 92, No. ST3, June, 1966, p. 17.

Conley, W. F., Becker, L. A., and Allnutt, R. B. (1963), "Buckling and Ultimate Strength of Plating Loaded in Edge Compression. Progress Report 2: Unstiffened Panels," Report 1682, David Taylor Model Basin, U. S. Department of the Navy, Washington, DC, May, 1963.

Cook, I. T., and Rockey, K. C. (1962), "Shear Buckling of Clamped and Simply Supported Infinitely Long Plates Reinforced by Transverse Stiffeners," The Aeronautical Quarterly, Vol. 13, February, 1962, p. 41.

Crockett, Harold B. (1942), "Predicting Stiffener and Stiffened Panel Crippling Stresses," Journal of the Aeronautical Sciences, Vol. 9, November, 1942, p. 501.

Department of Defense (1994), Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5, Washington, DC.

Dewalt, W.J. and Mack, R.E. (1980), "Design
Considerations for Aluminum Fasteners", SAE Technical Paper 800455, 1980.

Dolby, T., Kissell, J. R., and LaBelle, J. (2016), Light
Metal Age, "Pull-Out Strength of Screw Chases in Extrusions", August 2016, Vol. 74, No. 4, South San Francisco, CA.

Doyle, D. P. and Wright, T. E. (1988), "Quantitative Assessment of Atmospheric Galvanic Corrosion", Galvanic Corrosion, ASTM STP 978, Philadelphia, PA, pp. 161-173.

Dux, P. F. and Kitipornchai (1986),"Elastic Buckling Strength of Braced Beams," Journal of the Australian Institute of Steel Construction, May, 1986.

Ellingwood, B.E., MacGregor, J.G., Galambos, T.V., and Cornell, C.A. (1982) "Development of a Probability-Based Load Criteria: Load Factors and Load Combinations", Journal of the Structural Division, ASCE, Vol. 108, No. 5, pp. 978-997.

European Convention for Constructional Steelwork, European Recommendations for the Design of Light Gage Steel Members, First Edition, 1987, Brussels, Belgium.

Fortlin, D., Beaulieu D., and Bastien, J. (2001),
"Experimental Investigation of Aluminum FrictionType Connections, INALCO 8 Proceedings, Technical University of Munich, Munich, 2001.

Fuchs, H. O. and Stephens, R. I. (1980), Metal Fatigue in Engineering, John Wiley \& Sons, New York, NY.

Galambos, T.V. (1979), Load and Resistance Factor Design for Aluminum Structures, Research Report No. 54, Washington University, St. Louis, MO.

Gaylord, E.H., Gaylord, C.N., and Stallmeyer, J.E. (1992), Design of Steel Structures, $3^{\text {ri }}$ edition, McGraw-Hill, NY.

Gerard, George, and Becker, Herbert (1957), Handbook of Structural Stability, Part 1-Buckling of Flat Plates, Technical Note 3781, National Advisory Committee for Aeronautics (now NASA).

Goepfert, W.P. (1994), "Statistical Aspects of Mechanical Property Assurance", Aluminum and Magnesium Alloys, ASTM Volume 02.02.

Gozzi, Jonas (2007), Patch Loading Resistance of Plated Girders, Doctoral Thesis, Lulea University of Technology, Lulea, Sweden.

Graham, J. D., Sherbourne, A. N., Khabbaz, R. N. (1959), Welded Interior Beam Column Connections, Fritz Laboratory Report No. 233.15, Lehigh University, Bethlehem, PA.
ALLOWABLE STRESSES F / Ω FOR BUILDING-TYPE STRUCTURES (UNWELDED)

ALLOWABLE STRESSES F/ Ω FOR BUILDING-TYPE STRUCTURES (UNWELDED)
7005 - T53 ASTM B221 0.000 to 0.750 in. thick

F / Ω for
Table 4-7
DEFLECTIONS AND ALLOWABLE LOADS FOR 6063-T6 ALUMINUM BAR GRATING

												Span							
de								42	48	54	60	66	72	78	84	90	96	102	108
λ	20.6		D_{c}	in.	0.117	0.183	0.264	0.359	0.469	0.594	0.733	0.887	1.056	1.239	1.437				
1.5	0.125	53	1	$\mathrm{lb} / \mathrm{ft}^{2}$	1193	64	530	390	298	236	191	158	133	113	97	85	75	66	59
1/bar	0.0352		D_{u}		0.122	0.191	0.275	0.374	0.489	0.619	0.764	0.924	1.100	1.291	1.497	1.719	1.955	2.207	2.475
1/ft	0.3516		C	1b/f	1193	955	796	682	597	530	477	434	398	367	341	318	298	281	265
λ	45.1		D_{c}	in.	0.098	0.153	0.220	0.299	0.391	0.495	0.611	0.739	0.880	1.033	1.198	1.375	1.564	1.766	1.980
1.5	0.1875	59	U	$\mathrm{lb} / \mathrm{ft}^{2}$	1790	146	796	585	448	354	286	237	199	169	146	127	112	99	88
1/bar	0.0527		D_{u}	in.	0.1	0.191	0.275	0.374	0.489	0.619	0.764	0.924	1.100	1.291	1.497	1.719	1.955	2.207	2.475
1/ft	0.5273		C	$\mathrm{lb} / \mathrm{ft}$	1790	1432	1193	1023	89	796	716	651	597	551	511	477	448	421	398
λ	30.0		D_{c}	in.	0.098	0.153	0.220	0.299	0.391	0.495	0.611	0.739	0.880	1.033	1.198	1.375	1.564	1.766	1.980
1.5	0.25	63	u	/ft	2387	1528	1061	779	597	471	38	316	265	226	19	17	149	132	118
1/bar	0703		D_{u}	in	0.122	191	0.275	0.374	0.489	0.619	0.764	0.924	1.100	1.291	1.497	1.719	1.955	2.207	2.475
1/ft	0.7031		C	$\mathrm{lb} / \mathrm{ft}$	2387	1909	1591	1364	1193	1061	955	868	796	734	682	636	597	562	530
λ	22.5		D_{c}	in.	0.098	0.153	0.220	0.299	0.391	0.495	0.611	0.739	0.880	1.033	1.198	1.375	1.564	1.766	1.980
1.75	0.1875	66	U	/ft ${ }^{2}$	2437	1559	1083	796	609	481	390	322	27	231	199	173	15	135	120
1/bar	, 837		D_{u}		0.105	16	0.236	0.321	0.419	0.530	0.655	0.792	0.943	1.106	1.283	1.473	1.676	1.892	2.121
1/ft	0.8374		C	$\mathrm{lb} / \mathrm{ft}$	2437	1949	1624	1392	1218	1083	975	886	812	750	696	650	609	573	541
λ	32.5		D_{c}	in.	0.084	0.131	0.189	0.257	0.335	0.424	0.524	0.634	0.754	0.885	1.027	1.178	1.341	1.514	1.697
1.75	0.25	71	u	$\mathrm{lb} / \mathrm{ft}^{2}$	3249	2079	1444	1061	81	642	520	43	361	308	265	23	20	80	160
1/b	0.1117		D_{u}	in.	0.105	0.164	0.236	0.321	0.419	0.530	0.655	0.792	0.943	1.106	1.283	1.473	1.676	1.892	2.121
1/ft	1.1165		C	lb/ft	3249	2599	2166	1856	1624	1444	1300	1181	1083	1000	928	866	812	764	722
λ	24.3		D_{c}	in.	0.084	0.131	0.189	0.257	0.335	0.424	0.524	0.634	0.754	0.885	1.027	1.178	1.341	1.514	1.697
2	0.1875	73	U	$\mathrm{lb} / \mathrm{ft}^{2}$	3182	2037	1414	1039	796	629	509	421	354	301	260	226	199	176	157
1/bar	0.1250		D_{u}	in.	0.092	0.143	0.206	0.281	0.367	0.464	0.573	0.693	0.825	0.968	1.123	1.289	1.466	1.656	1.856
1/ft	1.2500		C	lb/ft	3182	2546	2122	1819	1591	1414	1273	1157	1061	979	909	849	796	749	70

