NOMINAL STRENGTHS OF WROUGHT ALUMINUM PRODUCTS

Table A.4.3

ALLOY TEMPER ASTM SPECIFICATION, THICIi(nNESS Fu Fu Fuw Fi F
PRODUCT
from to ksi ksi ksi ksi

1060 H121 B209, sheet & plate 0.017 2.000 1 9 8 2.5 1
1060 H12 B210, drawn tube 0.010 0.500 10 4 8.5 2.5 1
1060 H141 B209, sheet & plate 0.009 1.000 12 10 8 2.5 1
1060 H14 B210, drawn tube 0.010 0.500 12 10 8.5 2.5 1
1100 H121 B209, sheet & plate 0.017 2.000 14 1 11 3.5 1
1100 H12 B210, drawn tube 0.014 0.500 14 11 1 3.5 1
1100 H141 B209, sheet & plate 0.009 1.000 16 14 11 3.5 1
1100 H14 B210, drawn tube 0.014 0.500 16 14 1 3.5 1
2014 T6 B209, sheet & plate 0.040 0.249 66 58 - = 1.25
2014 T651 B209, sheet & plate 0.250 2.000 67 59 - - 1.25
2014 T6, T6510, T6511 B221, extrusion - 0.499 60 53 - - 1.25
2014 T6, T651 B211, bar, rod, & wire 0.125 8.000 65 55 - - 1.25
2014 T6 B210, drawn tube 0.018 0.500 65 55 - o 1.25
Alclad 2014 T6 B209, sheet & plate 0.025 0.039 63 55 - - 1.25
Alclad 2014 T6 B209, sheet & plate 0.040 0.249 64 57 N - 1.25
Alclad 2014 T651 B209, sheet & plate 0.250 0.499 64 57 = - 1.25
2219 T87 B209, sheet & plate 0.250 3.000 64 51 35 26 1.25
3003 H121 B209, sheet & plate 0.017 2.000 17 12 14 5 1
3003 H12 B210, drawn tube 0.010 0.500 17 12 14 5 1
3003 H141 B209, sheet & plate 0.009 1.000 20 17 14 5 1
3003 H14 B210, drawn tube 0.010 0.500 20 17 14 5 1
3003 H16" B209, sheet & plate 0.006 0.162 24 21 14 5 1
3003 H16 B210,.drawn tube 0.010 0.500 24 21 14 5 1
3003 H18! B209, sheet & plate 0.006 0.128 27 24 14 5 1
3003 H18 B210, drawn tube 0.010 0.500 27 24 14 5 1
Alclad 3003 H121 B209, sheet & plate 0.017 2.000 16 11 13 4.5 1
Alclad 3003 H141 B209, sheet & plate 0.009 1.000 19 16 13 4.5 1
Alclad 3003 H16" B209, sheet & plate 0.006 0.162 23 20 13 4.5 1
Alclad 3003 H14 B210, drawn tube 0.010 0.500 19 16 13 4.5 1
Alclad 3003 H18 B210, drawn tube 0.010 0.500 26 23 13 4.5 1
3004 H32! B209, sheet & plate 0.017 2.000 28 21 22 8.5 1
3004 H34" B209, sheet & plate 0.009 1.000 32 25 22 8.5 1
3004 H36' B209, sheet & plate 0.006 0.162 35 28 22 8.5 1
3004 H38! B209, sheet & plate 0.006 0.128 38 31 22 8.5 1
Alclad 3004 H32' B209, sheet & plate 0.017 2.000 27 20 21 8 1
Alclad 3004 H34" B209, sheet & plate 0.009 1.000 31 24 21 8 1
Alclad 3004 H36' B209, sheet & plate 0.006 0.162 34 27 21 8 1
3005 H25 B209, sheet & plate 0.016 0.080 26 22 - - 1
3005 H28 B209, sheet & plate 0.016 0.080 31 27 - - 1
3105 H25 B209, sheet & plate 0.013 0.080 23 19 - - 1
5005 H12 B209, sheet & plate 0.017 2.000 18 14 15 5 1
5005 H14 B209, sheet & plate 0.009 1.000 21 17 15 5 1
5005 H16 B209, sheet & plate 0.006 0.162 24 20 15 5 1
5005 H32! B209, sheet & plate 0.017 2.000 17 12 15 5 1
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Fgris determined using Section B.5.4.2
psr = stiffener effectiveness ratio determined as follows:

a) psr = 1.0 for b/t < hJ3 (B.5-6)
b) psr= s <10 for\ /3 <blt<h, (B.5-7)

b/t 1
o [— ——
5

e

r
C) pSTz—X
1.5t[bn+3)

A

e

< 1.0 for A, < b/t <2\, (B.5-8)

r, = the stiffener’s radius of gyration about the stiffened
element’s mid-thickness.

For straight stiffeners of constant thickness (see Figure
B.5.3)

r=(d,sin®)/~/3
where

d, = the stiffener’s flat width and

0, = the angle between the stiffener and the stiffened ele-
ment.

A =128 E/F, (B.5-9)

F. for the stiffened element determined using Section
B.5.4.3 shall not exceed F. for the stiffener determined using
Section B.5.4.1.

For flat elements

a) supported on one edge and with a stiffener on the other
edge, and

b) with a stiffener of depth Dg > 0.8b, where Dy is
defined in Figure B.5.3, or with a thickness greater than
the stiffener’s thickness,

the stress F, corresponding to the uniform compressive
strength is F,. = Fyr .

B.5.4.4 Flat Elements Supported on Both Edges
and with an Intermediate Stiffener

The stress F,. corresponding to-the uniform compressive
strength of flat elements supported on both edges and with
an intermediate stiffener is:

A, = area of the stiffener only, not including
any part of the element stiffened.
I, = moment of inertia of a section comprising
the stiffener and one half of the width of
the adjacent sub-elements and the transition
corners between them, taken about the
centroidal axis (denoted as o0-o in Figure B.5.4)
of the section parallel to the stiffened element.
b = distance between stiffener and supporting
element (see Figure B.5.4)
t = thickness of the flat element supported
on both edges (see Figure B.5.4)

F . shall not exceed F. determined using Section B.5.4.2 for
the sub-elements of the stiffened element, and shall not ex-
ceed F, of the stiffener determined using Section B.5.4.1.

B.5.4.5 Round Hollow Elements and Curved Ele-
ments Supported on Both Edges

The stress F. corresponding to the uniform compressive
strength of round hollow elements and curved elements
supported on both edges is:

Slenderness  Slenderness
LIMIT STATE F. A Limits
yielding F, A<\ B -F,

}\.1 = Dt
inelastic
buckling B, - D\ M<h<h
T’E

elastic A 2 A> Nz C
buckling 16)? (1 + E) =" 2T

Slenderness Slenderness
LIMIT STATE F. }\s Limits
B -F,
yielding Fyy A<\ M= Ty
inelastic ¢
buckling Bi=D.hi' M<h<h
2
elastic nE _
buckling 7\1'2 7\; = }\'2 }\42 - Cc
where
A =4.62 b | 1+ATG) (B.5-10)
t 10.671
1+,/1+ T
bt
| -38

For round hollow elements with transverse welds, use of
Section B.5.4.5 is limited to elements with R,/t < 20.

B.5.4.6 Direct Strength Method

As an alternate to Sections B.5.4.1 through B.5.4.4, the
stress F. corresponding to the uniform compressive strength
of flat elements without welds may be determined as:
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b b ‘ b b
l
& I \ T — —T
A is the area of the
‘ shaded portion ‘
b2 b2 —
b2 b/2

1 is the moment of

L | inertia of this portion

o AN 0 o 0

about the o0-0 axis

Figure B.5.4
FLAT ELEMENTS WITH AN INTERMEDIATE STIFFENER

Slenderness Slenderness
LIMIT STATE F. Aoy Limits
yielding F, Aeg <N B,-F,
) A=l
inelastic Dp
buckling By=Dpheg  M<hg<h
k,./B E
post-buckling =~ —Y " e > M re kB,
,=— P
eq Dp
E
Aoy = “E (B5-11)

F, = the elastic local buckling stress of the cross
section determined by analysis

B.5.5 Strength of Elements in Flexural Compression

The stress F, corresponding to the flexural compressive
strength of elements is:

For unwelded elements:

Fb= Fbo (BS—]Z)
For welded elements:
Fb = Fbo(l - szc /Agc) + Fbw sz(: /Agz: (B 5_13)

where
F,, = stress corresponding to the flexural compres-
sive strength calculated using Sections
B.5.5.1 through B.5.5.3 for an element if no
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part of the cross section were weld-affected.
Use buckling constants for unwelded metal
(Table B.4.1 or Table B.4.2) and F,.

Fy, = stress corresponding to the flexural compres-
sive strength calculated using Sections B.5.5.1
through B.5.5.3 for an element if the entire cross
section were weld-affected. Use buckling constants
for weld-affected zones (Table B .4.1) and F,,,,.

A,.. = cross sectional area of the weld-affected zone
in compression

A, = gross cross sectional area of the element
in compression.

B.5.5.1 Flat Elements Supported on Both Edges

The stress F), corresponding to the flexural compressive
strength of flat elements supported on both edges and flat
elements supported on the compression edge with the
tension edge free is:

Slenderness Slenderness
LIMIT STATE F, b/t Limits
B, - I.SFCy
yielding 1.5F,, bit<h, M=
inelastic mD,,
El?cell(?lng Bbrmebrb/t )\.1 <b/t<;\.2
post-_ k2 v BbrE b/t>M, = lebr
buckling (mb / t) - 2 mer
m= 115+¢,/2c,) for-1<c,/c.<1
m= 13/(1-c¢,/c,) forc,/c.<-1
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If the leg tip is in tension, lateral-torsional buckling
strength determined by Section F.5¢ with

4
" - 0.73Elz (C,

[\/1+0.88(th/172)2 +1| (®55)

b

¢) Equal leg angles without lateral-torsional restraint:
Strengths shall be calculated with S, equal to 0.80 of the
geometric section modulus.

If the leg tip is in compression, M, is the lesser of:

(1) local buckling strength determined by Section F.5a(1)

(2) lateral-torsional buckling strength determined by
F.5c with

_ 0.58Eb'C,
e LbZ

M [\/1 +088(L,t /b 1|  (F5-6)

If the leg tip is in tension, M, is the lesser of:

(1) yield strength determined by Section F.5b
(2) lateral-torsional buckling strength determined by
Section F.5¢ with

I 0.58Eb*tC,

) o JI+088(L,1 16°) +1|  (F5-7)
b

d) Unequal leg angles without lateral-torsional re-
straint: moments about the geometric axes shall be resolved
into moments about the principal axes and the angle shall
be designed as an angle bent about a principal-axis (Section
F5.2).

F.5.2 Bending About Principal Axes

Bending about principal axes-is shown in Figure E.S.5.

ZVZ W w

Minor Axis Bending Major Axis Bending

Figure F.5.5

I-50

a) Major axis bending: M,, is the lesser of:

(1) local buckling strength determined by Section F.5a
for the leg with its tip in compression

(2) lateral-torsional buckling strength determined by
Section F.5c, with

9OEAr 1C :
M= ( 1+[4.4 ﬁwrzj+4.4 —EFJ (F5-8)

‘ 8L, Lt "

B,= [%fz (w2+ zz)dA]— 2z, (F.5-9)

B, is the coefficient of monosymmetry about the
major principal axis. {, is positive when the short leg
is in compression, negative when the long leg is in compres-
sion, and zero for equal-leg angles. (See the commentary
for values for common angle sizes and equations for de-
termining f3,.) If the long leg is in compression anywhere
along the unbraced length of the angle, 3, shall be taken as
negative.

z, = coordinate along the z-axis of the shear center with

respect to the centroid

I, = moment of inertia about the major principal axis

b) Minor axis bending:

(1) If the leg tips are in compression, M, is the lesser
of the local buckling strength determined by
Section F.5a(1) and the yield strength determined by
Section F.5b.

(2) If the leg tips are in tension, M, is the yield strength
determined by Section F.5b.
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Chapter J Design of Connections

This chapter addresses connecting elements and connectors.

J.1 GENERAL PROVISIONS

J.1.1 Design Basis

The available strength of connections shall be deter-
mined in accordance with the provisions of this chapter and
Chapter B.

If the longitudinal centroidal axes of connected
axially loaded members do not intersect at one point, the
connection and members shall be designed for the effects
of eccentricity.

J.1.2 Fasteners in Combination with Welds

Fasteners shall not be considered to share load in
combination with welds.

J.1.3 Maximum Spacing of Fasteners

The pitch and gage of fasteners joining components of
tension members shall not exceed (3 + 20¢) in. [(75 + 201)
mm] where 7 is the thickness of the outside component.

In outside components of compression members:

a) The component’s strength shall satisfy the requirements
of Section E.2 with an effective length kL = s/2, where s is
the pitch, and

b) If multiple rows of fasteners are used, the component’s
strength shall satisfy the requirements of Section B.5.4.2
with a width b = 0.8g where g is the gage. If only one line of
fasteners is used, the component’s strength shall satisfy the
requirements of Section B.5.4.1 with a width b = the edge
distance of the fastener.

J.2 WELDS

The available strength (¢R, for LRFD and R, /Q for
ASD) of welds shall be determined using this Section where

¢ = 0.75 (LRFD)

Q= 195(ASD)

J.2.1 Groove Welds

J.2.1.1 Complete Joint Penetration and Partial
Joint Penetration Groove Welds

The following types of groove welds are complete joint
penetration welds:

a) Welds welded from both sides with the root of the first
weld backgouged to sound metal before welding the second
side.

b) Welds welded from one side using permanent or
temporary backing.

¢) Welds welded from one side using AC-GTAW root
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pass without backing

d) Welds welded from one side using PAW-VP in the
keyhole mode.

All other groove welds are partial joint penetration welds.

J.2.1.2 Groove Weld Size

The size S,, of a complete joint penetration groove weld
is the thickness of the thinner part joined.

The size S, of a partial joint penetration groove weld is
the depth of preparation for all J and U groove welds and
for all V and bevel groove welds with an included angle
greater than 45°.

J.2.1.3 Groove Weld Effective Length

A groove weld’s effective length L,, for tension and
compression is the length of the weld perpendicular to the
direction of tensile or compressive stress. A groove weld’s
effective length for shear is the length of the weld parallel to
the direction of shear stress.

J.2.2 Fillet Welds

J.2.2.1 Fillet Weld Size

The effective throat S,,, is the shortest distance from the
joint root to the face of the diagrammatic weld.

The size of fillet welds shall be not less than the size
required to transmit calculated forces or the size shown in
Table J.2.1. These requirements do not apply to fillet weld
reinforcements of groove welds.

Table J.2.1
MINIMUM SIZE OF FILLET WELDS
Base Metal Base Metal
Thickness t of Minimum Thickness t of Minimum
Thicker Part Size of Thicker Part Size of
Joined Fillet Weld Joined Fillet Weld
in. in. mm mm
t<V 1/8 t<6 3
Yo <t<e 3/16 6<t<13 5
Yo<t< 1/4 13<t<20 6
t>3% 5/16 t>20 8

The maximum size of fillet welds shall be:

a) Along edges of material less than % in. (6 mm) thick,
not greater than the thickness of the material.

b) Along edges of material % in. (6 mm) or more in thick-
ness, no greater than the thickness of the material minus 1/16
in. (2 mm), unless the weld is especially designated on the
drawings to be built out to obtain full-throat thickness. In
the as-welded condition, the distance between the edge
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of the base metal and the toe of the weld is permitted to
be less than 1/16 in. (2 mm) provided the weld size is
clearly verifiable.

J.2.2.2 Fillet Weld Effective Length

A fillet weld’s effective length L,, is the overall length
of the weld, including boxing. If the effective length is less
than four times its nominal size S,,, the effective weld size
shall be considered to be 25% of its effective length.

The length of any segment of intermittent fillet welds
shall not be less than the greater of four times the weld size
and 1% in. (40 mm).

The maximum effective length of an end-loaded fillet
weld is 100S,,.

J.2.3 Plug and Slot Welds

The effective area A,, of plug or slot welds is the
nominal area of the hole or slot in the plane of the faying
surface. Slot lengths shall not exceed 10 times the slotted
material’s thickness.

J.2.4 Stud Welds

The base metal thickness for arc stud welding shall not
be less than 50% of the stud diameter. The base metal thick-
ness for capacitor discharge stud welding shall not be less
than 25% of the stud diameter.

J.2.5 Strength

The nominal strength R, of groove, fillet, plug, slot, and
stud welded joints shall be the lesser of the base material
strength for the limit states of tensile rupture and shear rup-
ture and the weld metal strength for the limit state of rupture
as follows:

a) For the base metal

R,= FipyAsu J.2-1)

b) For the weld metal

R, = F.. A J.2-2)
where

F 5, = nominal stress of the base metal corre-
sponding to its welded ultimate strength
from Table A 4.3 or Table A .4.3M

F,, = nominal stress of the weld metal correspond-
ing to its ultimate strength from Table A 4.6
Agy = cross-sectional area of the base metal
A, = effective area of the weld
Fopvi > Fow s Ay, and A, are given in Table J.2.2.
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Table J.2.2
NOMINAL STRENGTH OF
WELDED JOINTS
Base Metal Weld Metal
Load Type . . )
and Direction Nominal Effective Nominal Effective Area
) Stress Area Stress
Relative to F A F Ave
Weld Axis néM M w
COMPLETE-JOINT PENETRATION GROOVE WELDS
tension or
compression
normal to weld Fuuw Sulie Fuw Sulwe
axis
tension or

compression
parallel to weld
axis

tension or compression in parts parallel to a weld need
not be considered in designing welds joining the parts

shear

0-6Ftuw SwLwe O-6Fluw SwLwe

PARTIAL-JOINT PENETRATION GROOVE WELDS

tensionor
compression
normal to weld
axis

Ftuw SwLwe O'GFILIW SwLwe

tension or
compression
parallel to weld

tension or compression in parts parallel to a weld need
not be considered in designing welds joining the parts

axis
shear 0.6Fu | Sl | 06Fu, |  Silu
FILLET WELDS
shear 0.6F s Sule ?éiffg’tg’qw)) SueLwo
tension or

compression
parallel to weld

tension or compression in parts parallel to a weld need
not be considered in designing welds joining the parts

axis
PLUG AND SLOT WELDS
shear
parallel to fay- 0.6Fuw see J.2.3 0.6F see J.2.3
ing surface
STUD WELDS

shear 0.6Fuuw nt D?/4 0.6F ., (m/4)(D—1.191/n)?

tension Fow nt D4 Fiuw (/4)(D—1.191/n)?

@ Alternately, the strength of fillet welds loaded transversely shall be
taken as 1.36 times the strength given in Table J.2.2.
@ Fuw for base metal is listed in Tables A.4.3 and A.4.3M.

® Fuw for filler metal is listed in Table A.4.6.

J.2.6 Combination of Welds

If two or more of the types of welds (groove, fillet,

plug, or slot) are combined in a single joint, the strength
of each shall be separately computed with respect to the
axis of the group in order to determine the strength of the
combination.

J.2.7 Post-Weld Heat Treatment

The nominal strength of the weld-affected zone of post-
weld-heat-treated base metal shall be taken as given in
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Table J.5.4
HOLE DIAMETER FOR EQUATION J.5-10

Screw Screw Hole Drill Size
Size Diameter Diameter
Din. D, in.
8 0.164 0.177 16
10 0.190 0.201 7
12 0.216 0.228 1
Ya 0.250 0.266 H

b) The nominal strength R, for the limit state of pull-over
for countersunk screws with an 82° nominal angle head is:

R,=(0.27 +145t, /D) D t,F,, (J.5-11)

for 0.06 in. <1, < 0.19 in. (1.5 mm < #, < 5 mm) and
t/D<11.1ft,/D>1.1,uset, /D=1.1
J.5.4.3 Screw Tension

The nominal strength R, of an aluminum screw for the
limit state of screw tensile rupture is:

R,=A.F, /125 J.5-12)
where
A, = root area of the screw

F,, = tensile ultimate strength of the screw
= 68 ksi (470 MPa) for 7075-T73 screws
= 62 ksi (430 MPa) for 2024-T4 screws

J.5.5 Screwed Connection Shear

The shear strength of a screwed connection is the least of
the bearing, tilting, and screw shear rupture strengths. The
available shear strength (¢R, for LRFD and R,/Q2 for ASD)
shall be determined as follows:

¢ = 0.50 (LRFD)

Q = 3.0 (ASD)

The nominal strength R, for the limit state of bearing
shall be determined in accordance with Section J.5.5.1.

The nominal strength R, for the limit state of tilting shall
be determined in accordance with Section J.5.5.2.

The nominal strength R, for the limit state of screw
shear rupture shall be determined in accordance with
Section J.5.5.3.

J.5.5.1 Screw Bearing

The nominal strength R, for the limit state of bearing is
Rn: de tFtusthFtu (J5—13)
where

d, = distance from the center of the screw to the edge
of the part in the direction of force.
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for plain holes, nominal thickness of the connected
part; for countersunk holes, nominal thickness of
the connected part less ' the countersink depth.
tensile ultimate strength of the connected part
nominal diameter of the screw

Ftu
D

J.5.5.2 Screw Tilting

For 1, < 1, the nominal strength R, for the limit state of
tilting is:

R,=42(t2D)2 F,, (J.5-14)

where
t; =nominal thickness of the part in contact with the
screw head or washer
1, = nominal thickness of the part not in contact with the
screw head or washer

For t, > #, tilting is not a limit state.

J.5.5.3 Screw Shear

The nominal strength R, of an aluminum screw for the
limit state of screw shear rupture is:

R, =A, Fy /125 (J.5-15)

where

A, = root area of the screw

F,, = shear ultimate strength of the screw
41 ksi (285 MPa) for 7075-T73 screws
37 ksi (255 MPa) for 2024-T4 screws

J.6 PINS

J.6.1 Holes for Pins

The nominal diameter of holes for pins shall not be
more than 1/32 in. (1 mm) greater than the nominal diam-
eter of the pin.

J.6.2 Minimum Edge Distance of Pins

The distance from the center of a pin to an edge of a
part shall not be less than 1.5 times the nominal diameter of
the pin. See Section J.6.5 for the effect of edge distance on
bearing strength.

J.6.3 Pin Tension

Pins shall not be used to resist loads acting parallel to the
axis of the pin.
J.6.4 Pin Shear and Flexure

The available strength (¢pR, for LRFD and R,/Q2 for ASD)
of an aluminum pin in shear or flexure shall be determined
as follows:
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M,, = mean value of the material factor, the ratio of
the specimen’s relevant material strength to the
specified minimum strength. The relevant mate-
rial strength shall be determined by conducting
tensile tests in accordance with ASTM B557 on
specimens taken from the component tested.

n = number of tests
= strength of ith test .
R,,= mean strength of all tests = 4 "
n

n

Z
[

Ve = coefficient of variation of the fabrication factor
V= coefficient of variation of the material factor
Vp» = coefficient of variation of the ratio of the

test strengths divided by the average

value of all the test strengths

2

2

Vo = coefficient of variation of the loads

J(0.1050)* +0.25%

1.050 +1
in lieu of calculation by the above formula, V, = 0.21

a= D,/L,;in lieu of calculation, a. = 0.2
o= the target reliability index
2.5 for columns, beams and beam-columns,
3.0 for tension members, and
3.5 for connections.
The following values shall be used when data established
from a sufficient number of results on material properties do
not exist for the member or connection:

M,, = 1.10 for behavior governed by yield
1.00 for behavior governed by rupture

F,,= 1.00
VM = 0.06
Vi = 0.05 for structural members and mechanically

fastened connections
= 0.15 for welded connections

1.4 TESTING ROOFING AND SIDING

The flexural strength® of roofing and siding shall
be established from tests when any of the following
conditions apply.

a) Web angles are asymmetrical about the centerline
of a valley, rib, flute, crimp, or other corrugation;

b) Web angles are less than 45°;

¢) Aluminum panels are alternated with panels composed
of any material having significantly different strengths or
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deflection characteristics;

d) Flats spanning from rib to rib or other corrugation
in the transverse direction have a width to thickness ratio
greater than either of the following

(1) 1230 h is the design load i f(447 h
7 where g 1s the design load 1 pst ( —_— where
7 7

q is the design load in kN/m?)

F, o . F,
(2) 435, /— where F,;is in ksi and g is in psf ( 37, [—
q q

where F,, is in MPa and ¢ is in kN/m?);

e) Panel ribs, valleys, crimps, or other corrugations are
of unequal depths;

) Specifications prescribe less than one fastener per rib
to resist negative or uplift loading at each purlin, girt, or
other transverse supporting member; or

g) Panels are attached to supporting members by
profile interlocking straps or clips.

1.4.1 Test Method

Tests shall be conducted in accordance with
ASTM E 1592.

1.4.2 Different Thicknesses

Only the thinnest and thickest specimens manufactured are
required to be tested when panels are of like configuration,
differing only in material thickness. Where the failure of the
test specimens is from flexural stress, the flexural strength
for intermediate thicknesses shall be interpolated as follows:

logt, —logt

g1 nin_ | (Jog M, - log M)

logM, =logM, +
—logt

max min

(14-1)

M; = flexural strength of member of intermediate
thickness #;
M, = flexural strength of member of thinnest material
M, = flexural strength of member of thickest material
t; = thickness of intermediate thickness material
t,.in = thickness of thinnest material tested
t.ae = thickness of thickest material tested

1.4.3 Available Strengths

Available strengths shall be determined using the resis-
tance factors for LRFD and safety factors for ASD given in
Chapter F for flexure and those in Chapter J applied to the
minimum test strength achieved for fasteners.

1.4.4 Deflections

Deflections shall meet the requirements of Section L.3.
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