FIRE PERFORMANCE EVALUATION TESTED IN ACCORDANCE WITH ASTM E 136-11, STANDARD TEST METHOD FOR BEHAVIOR OF MATERIALS IN A VERTICAL TUBE FURNACE AT 750 °C

MATERIAL ID: 889
TRADE NAME: 6061 – T651

FINAL REPORT
Consisting of 5 Pages

SwRI® Project No. 01.16052.01.620d
Test Dates: March 25, 28, and 29, 2011
Report Date: April 14, 2011

Prepared for:
The Aluminum Association, Inc.
1525 Wilson Blvd., Suite 600
Arlington, VA 22209

Prepared by: Cory Harper, Technician

Submitted by:

Approved by:
Matthew S. Blais, Ph.D.
Director
Fire Technology Department

This report is for the information of the client. It may be used in its entirety for the purpose of securing product acceptance from duly constituted approval authorities. This report shall not be reproduced except in full, without the written approval of SwRI. Neither this report nor the name of the Institute shall be used in publicity or advertising.
1.0 INTRODUCTION

This report describes a small-scale fire test conducted on a material identified as 889 in accordance with ASTM E 136-11, Standard Test Method for Behavior of Materials in a Vertical Tube Furnace at 750 °C, for The Aluminum Association, Inc., located in Arlington, Virginia. Testing was conducted March 25, 28, and 29, 2011, at the Fire Technology Department of Southwest Research Institute (SwRI), located in San Antonio, Texas.

This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.

The results presented in this report apply specifically to the specimens tested, in the manner tested, and not to the entire production of these or similar materials, nor to the performance when used in combination with other materials.

2.0 DESCRIPTION OF TEST APPARATUS AND PROCEDURE

The ASTM E 136-11 hot-air ignition furnace consists primarily of an electrical heating unit and specimen holder. The furnace tube is a vertical tube, with an inside diameter of 100 ± 5 mm and a length of 230 ± 20 mm, made of ceramic that will withstand at least 750 °C. The inner ceramic tube, with an inside diameter of 75 ± 5 mm, a length of 230 ± 20 mm, and a thickness of approximately 3 mm, is placed inside the furnace tube and positioned 20 ± 2 mm above the furnace floor on spacer blocks. The test apparatus is shown in Figure 1.

The air temperature inside the furnace is stabilized to 750 °C prior to testing. Sheathed thermocouples are used to measure the temperature of the furnace air (Tₐ), specimen surface (Tₛ), and specimen interior (Tᵢ). The duration of flaming is recorded during the test, and specimen mass loss is determined based on weight measurements before and after testing. ASTM E 136-11 requires that a series of four tests be conducted for each sample.
A material passes if at least three of the four specimens tested meet the following criteria (The three specimens do not need to meet the same condition):

1. When the weight loss is 50% or less:
 a. The surface and interior thermocouples cannot have a temperature rise of more than 30 °C from the stabilized temperature measured by the interior thermocouple before testing.
 b. No sustained flaming after the first 30 s of the test.

2. When the weight loss is 50% or more:
 a. The surface and interior thermocouples cannot exhibit any temperature rise from the stabilized temperature measured by the interior thermocouple before testing.
 b. No flaming at any time during the test.

3.0 DESCRIPTION OF TEST SPECIMENS

The Aluminum Association, Inc., provided 24 specimens of the material, identified as 889. The samples measured approximately $38 \times 38 \times 12.7$ mm and were received by SwRI on February 28, 2011. A description of the material provided by the client can be found in Table 1. The samples were placed in a controlled environment maintained at 23 ± 2 °C (73 ± 5 °F) and $50\% \pm 5\%$ relative humidity on March 5, 2011. Prior to testing, the specimens were placed in an oven at 60 °C for 24 hr, then placed in a desiccator to cool at room temperature. Four specimens were stacked to obtain a nominal 50 mm thickness. Due to the nature of the material, at the 750° C heat
exposure from this test, the solid block changed phase to a liquid pool. To avoid furnace damage from molten material, the specimen edges were slightly trimmed and placed in an open-top vessel as described in section 6.2.1 of the ASTM E136-11 standard.

Table 1. Test Sample Description Provided by the Client.

<table>
<thead>
<tr>
<th>Material ID</th>
<th>Description of Material</th>
<th>Composition</th>
<th>Nominal Thickness</th>
<th>Nominal Density</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>889</td>
<td>6061 – T651 Aluminum Extrusion</td>
<td>Nominal w/o – 1.0 Mg – 0.6 Si – 0.3 Cu – 0.2 Cr – Al balance</td>
<td>0.50 in. (12.7 mm*)</td>
<td>0.098 lbs/in.³ (2680 kg/m³*)</td>
<td>Aluminum (silver like) (Silver*)</td>
</tr>
</tbody>
</table>

* Measured by SwRI personnel.

4.0 TEST RESULTS

Testing was conducted on March 25, 28, and 29, 2011. During testing, flaming was not observed in any of the four test runs. Tabular test data and graphs of the measured temperatures plotted with respect to time are presented on page 5.

5.0 CONCLUSIONS

The material identified as 889 meets the performance criteria presented in ASTM E136-11.
ASTM E 136 TEST DATA SHEET

Client: The Aluminum Association, Inc.
Date Prepared by SwRI: February 28, 2011

Operator: Z. Holt
Prepared on test date

Material ID*: 889
Original Thickness: 12.7 mm nominally

Trade Name*: 6061 - T651
Test Sample Thickness: 50 mm nominally

Description*: 6061 - T651 aluminum extrusion
Average Sample Mass: 192.15 g

RESULTS

<table>
<thead>
<tr>
<th>Run</th>
<th>Initial Mass (g)</th>
<th>Final Mass (g)</th>
<th>Percent Mass Loss</th>
<th>Specimen Center Stabilized Maximum δT (°C)</th>
<th>Criteria *</th>
<th>Specimen Surface Stabilized Maximum δT (°C)</th>
<th>Criteria *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.73</td>
<td>192.67</td>
<td>0%</td>
<td>752 765 14</td>
<td>Pass</td>
<td>752 771 19</td>
<td>Pass</td>
</tr>
<tr>
<td>2</td>
<td>191.46</td>
<td>191.39</td>
<td>0%</td>
<td>751 766 15</td>
<td>Pass</td>
<td>751 769 18</td>
<td>Pass</td>
</tr>
<tr>
<td>3</td>
<td>191.03</td>
<td>191.00</td>
<td>0%</td>
<td>749 768 18</td>
<td>Pass</td>
<td>749 772 23</td>
<td>Pass</td>
</tr>
<tr>
<td>4</td>
<td>193.39</td>
<td>193.18</td>
<td>0%</td>
<td>749 767 18</td>
<td>Pass</td>
<td>749 771 22</td>
<td>Pass</td>
</tr>
</tbody>
</table>

*Criteria for when percent mass loss < 50%

TEST OBSERVATIONS

<table>
<thead>
<tr>
<th>Insertion Time (s)</th>
<th>Ignition Time (mins)</th>
<th>Flameout Duration of flaming after first 30 s (mins)</th>
<th>Criteria: No flaming after first 30 s</th>
<th>Observed Smoke (min:s)</th>
<th>Observed Soot (min:s)</th>
<th>Total Test Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>N/A</td>
<td>Pass</td>
<td>None</td>
<td>None</td>
<td>2989</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>N/A</td>
<td>Pass</td>
<td>None</td>
<td>None</td>
<td>3030</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>N/A</td>
<td>Pass</td>
<td>None</td>
<td>None</td>
<td>3271</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>N/A</td>
<td>Pass</td>
<td>None</td>
<td>None</td>
<td>3045</td>
</tr>
</tbody>
</table>

Center Temperature Graph

Surface Temperature Graph